PDGF in gliomas: more than just a growth factor?
نویسندگان
چکیده
Platelet-derived growth factor B (PDGF-B) is a growth factor promoting and regulating cell migration, proliferation, and differentiation, involved in both developmental processes and in maintaining tissue homeostasis under strict regulation. What are the implications of prolonged or uncontrolled growth factor signaling in vivo, and when does a growth factor such as PDGF-B become an oncogene? Under experimental conditions, PDGF-B induces proliferation and causes tumor induction. It is not known whether these tumors are strictly a PDGF-B-driven proliferation of cells or associated with secondary genetic events such as acquired mutations or methylation-mediated gene silencing promoting neoplasia. If PDGF-B-driven tumorigenesis was only cellular proliferation, associated changes in gene expression would thus be correlated with proliferation and not associated with secondary events involved in tumorigenesis and neoplastic transformation such as cycle delay, DNA damage response, and cell death. Changes in gene expression might be expected to be reversible, as is PDGF-B-driven proliferation under normal circumstances. Since PDGF signaling is involved in oligodendrocyte progenitor cell differentiation and maintenance, it is likely that PDGF-B stimulates proliferation of a pool of cells with that phenotype, and inhibition of PDGF-B signaling would result in reduced expression of oligodendrocyte-associated genes. More importantly, inhibition of PDGF signaling would be expected to result in reversion of genes induced by PDGF-B accompanied by a decrease in proliferation. However, if PDGF-B-driven tumorigenesis is more than simply a proliferation of cells, inhibition of PDGF signaling may not reverse gene expression or halt proliferation. These fundamental questions concerning PDGF-B as a potential oncogene have not been resolved.
منابع مشابه
Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops.
The expression of platelet-derived growth factor (PDGF) and its receptors was analyzed in 14 gliomas of various degrees of malignancy and compared with three gliosis cases by in situ hybridization and immunohistochemistry techniques. Expression of both PDGF A- and B-chains was higher in glioblastomas than in astrocytomas. The PDGF A-chain mRNA was predominantly found in cell-rich areas in gliob...
متن کاملThe gene expression profile of PDGF-treated neural stem cells corresponds to partially differentiated neurons and glia.
We have previously shown that platelet-derived growth factor AA (PDGF-AA) stimulates the expansion of neuronal progenitors from neural stem cells, but is unable to replace fibroblast-growth factor 2 (FGF-2) as a stem cell mitogen. In the present study, we compared gene expression in neural stem cells that were grown in the presence of FGF-2 and in cells cultured with PDGF-AA or in the absence o...
متن کاملRole of platelet-derived growth factors in physiology and medicine.
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-alpha signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skelet...
متن کاملBiology and treatment of malignant glioma.
A large number of oncogenes have been identified as aberrant in gliomas, but only the erbB oncogene (gene encoding the epidermal growth factor receptor [EGFR]) is amplified in an appreciable number. The loss or mutation of tumor-suppressor genes located on different autosomes may be associated with progression of malignant gliomas. The p53 tumor-suppressor gene (located on chromosome 17) is fre...
متن کاملHydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice
Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 117 شماره
صفحات -
تاریخ انتشار 2012